
ℓ1-norm Methods for

Convex-Cardinality Problems

Part II

• total variation

• iterated weighted ℓ1 heuristic

• matrix rank constraints
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Total variation reconstruction

• fit xcor with piecewise constant x̂, no more than k jumps

• convex-cardinality problem: minimize ‖x̂− xcor‖2 subject to
card(Dx) ≤ k (D is first order difference matrix)

• heuristic: minimize ‖x̂− xcor‖2 + γ‖Dx‖1; vary γ to adjust number of
jumps

• ‖Dx‖1 is total variation of signal x̂

• method is called total variation reconstruction

• unlike ℓ2 based reconstruction, TVR filters high frequency noise out
while preserving sharp jumps
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Example (§6.3.3 in BV book)

signal x ∈ R2000 and corrupted signal xcor ∈ R2000
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Total variation reconstruction

for three values of γ
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ℓ2 reconstruction

for three values of γ
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Example: 2D total variation reconstruction

• x ∈ Rn are values of pixels on N ×N grid (N = 31, so n = 961)

• assumption: x has relatively few big changes in value (i.e., boundaries)

• we have m = 120 linear measurements, y = Fx (Fij ∼ N (0, 1))

• as convex-cardinality problem:

minimize card(xi,j − xi+1,j) + card(xi,j − xi,j+1)
subject to y = Fx

• ℓ1 heuristic (objective is a 2D version of total variation)

minimize
∑

|xi,j − xi+1,j|+
∑

|xi,j − xi,j+1|
subject to y = Fx
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TV reconstruction
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. . . not bad for 8× more variables than measurements!

EE364b, Stanford University 6



ℓ2 reconstruction
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. . . this is what you’d expect with 8× more variables than measurements
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Iterated weighted ℓ1 heuristic

• to minimize card(x) over x ∈ C

w := 1

repeat
minimize ‖diag(w)x‖1 over x ∈ C
wi := 1/(ǫ+ |xi|)

• first iteration is basic ℓ1 heuristic

• increases relative weight on small xi

• typically converges in 5 or fewer steps

• often gives a modest improvement (i.e., reduction in card(x)) over
basic ℓ1 heuristic
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Interpretation

• wlog we can take x � 0 (by writing x = x+ − x−, x+, x− � 0, and
replacing card(x) with card(x+) + card(x−))

• we’ll use approximation card(z) ≈ log(1 + z/ǫ), where ǫ > 0, z ∈ R+

• using this approximation, we get (nonconvex) problem

minimize
∑n

i=1 log(1 + xi/ǫ)
subject to x ∈ C, x � 0

• we’ll find a local solution by linearizing objective at current point,

n
∑

i=1

log(1 + xi/ǫ) ≈
n
∑

i=1

log(1 + x
(k)
i /ǫ) +

n
∑

i=1

xi − x
(k)
i

ǫ+ x
(k)
i
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and solving resulting convex problem

minimize
∑n

i=1wixi

subject to x ∈ C, x � 0

with wi = 1/(ǫ+ xi), to get next iterate

• repeat until convergence to get a local solution
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Sparse solution of linear inequalities

• minimize card(x) over polyhedron {x | Ax � b}, A ∈ R100×50

• ℓ1 heuristic finds x ∈ R50 with card(x) = 44

• iterated weighted ℓ1 heuristic finds x with card(x) = 36
(global solution, via branch & bound, is card(x) = 32)
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Detecting changes in time series model

• AR(2) scalar time-series model

y(t+ 2) = a(t)y(t+ 1) + b(t)y(t) + v(t), v(t) IID N (0, 0.52)

• assumption: a(t) and b(t) are piecewise constant, change infrequently

• given y(t), t = 1, . . . , T , estimate a(t), b(t), t = 1, . . . , T − 2

• heuristic: minimize over variables a(t), b(t), t = 1, . . . , T − 1

∑T−2
t=1 (y(t+ 2)− a(t)y(t+ 1)− b(t)y(t))2

+γ
∑T−2

t=1 (|a(t+ 1)− a(t)|+ |b(t+ 1)− b(t)|)

• vary γ to trade off fit versus number of changes in a, b
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Time series and true coefficients
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TV heuristic and iterated TV heuristic

left: TV with γ = 10; right: iterated TV, 5 iterations, ǫ = 0.005
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Extension to matrices

• Rank is natural analog of card for matrices

• convex-rank problem: convex, except for Rank in objective or
constraints

• rank problem reduces to card problem when matrices are diagonal:
Rank(diag(x)) = card(x)

• analog of ℓ1 heuristic: use nuclear norm, ‖X‖∗ =
∑

i σi(X)
(sum of singular values; dual of spectral norm)

• for X � 0, reduces to TrX (for x � 0, ‖x‖1 reduces to 1Tx)
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Factor modeling

• given matrix Σ ∈ Sn
+, find approximation of form Σ̂ = FFT +D, where

F ∈ Rn×r, D is diagonal nonnegative

• gives underlying factor model (with r factors)

x = Fz + v, v ∼ N (0, D), z ∼ N (0, I)

• model with fewest factors:

minimize RankX
subject to X � 0, D � 0 diagonal

X +D ∈ C

with variables D, X ∈ Sn

C is convex set of acceptable approximations to Σ
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• e.g., via KL divergence

C = {Σ̂ | − log det(Σ−1/2Σ̂Σ−1/2) +Tr(Σ−1/2Σ̂Σ−1/2)− n ≤ ǫ}

• trace heuristic:

minimize TrX
subject to X � 0, D � 0 diagonal

X +D ∈ C

with variables d ∈ Rn, X ∈ Sn

EE364b, Stanford University 17



Example

• x = Fz + v, z ∼ N (0, I), v ∼ N (0, D), D diagonal; F ∈ R20×3

• Σ is empirical covariance matrix from N = 3000 samples

• set of acceptable approximations

C = {Σ̂ | ‖Σ−1/2(Σ̂− Σ)Σ−1/2‖ ≤ β}

• trace heuristic

minimize TrX
subject to X � 0, d � 0

‖Σ−1/2(X + diag(d)− Σ)Σ−1/2‖ ≤ β
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Trace approximation results
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• for β = 0.1357 (knee of the tradeoff curve) we find

– 6
(

range(X), range(FFT )
)

= 6.8◦

– ‖d− diag(D)‖/‖diag(D)‖ = 0.07

• i.e., we have recovered the factor model from the empirical covariance
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