/1-norm Methods for
Convex-Cardinality Problems

Part |l

e total variation
e iterated weighted /; heuristic

e matrix rank constraints
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Total variation reconstruction

o fit .o With piecewise constant 2, no more than k£ jumps

e convex-cardinality problem: minimize ||Z — zcor||2 Subject to
card(Dx) < k (D is first order difference matrix)

e heuristic: minimize || — Tcor||2 + v||Dx||1; vary 7 to adjust number of
jumps

e ||Dzx||; is total variation of signal &
e method is called total variation reconstruction

e unlike /5 based reconstruction, TVR filters high frequency noise out
while preserving sharp jumps
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Example (§6.3.3 in BV book)
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Total variation reconstruction

for three values of ~
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/5 reconstruction
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Example: 2D total variation reconstruction

e x € R" are values of pixels on N x N grid (N = 31, so n = 961)
e assumption: x has relatively few big changes in value (i.e., boundaries)
e we have m = 120 linear measurements, y = Fx (F;; ~ N(0,1))

e as convex-cardinality problem:

minimize card(x; ; — x;y1 ;) + card(z; ; — x; j11)
subject to y = Fx

e (1 heuristic (objective is a 2D version of total variation)

minimize Z’mi,j _xz'—l—l,j‘ +Z|$i,j _Zci,j+1|
subject to y = Fx
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TV reconstruction

TV reconstruction

origina

... not bad for 8 more variables than measurements!
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/5 reconstruction

¢5 reconstruction

original

... this is what you'd expect with 8 x more variables than measurements
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Iterated weighted /; heuristic

e to minimize card(x) over x € C

w:=1

repeat
minimize || diag(w)x||; over x € C
w; = 1/(€e + |x;])

e first iteration is basic ¢; heuristic
e increases relative weight on small z;
e typically converges in 5 or fewer steps

e often gives a modest improvement (i.e., reduction in card(z)) over
basic ¢1 heuristic
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Interpretation

e wlog we can take x = 0 (by writingx =2, —z_, x,,x_ = 0, and
replacing card(z) with card(z) + card(x_))

e we'll use approximation card(z) = log(1 + z/¢€), where ¢ > 0, z € R,
e using this approximation, we get (nonconvex) problem

minimize >  log(1 + z;/e)
subjectto z€(C, x>0

e we'll find a local solution by linearizing objective at current point,

;log(1+xi/6 Zlog 1+:1:( >/e +sz—m(

z1€+95

(k)
k)
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and solving resulting convex problem

minimize ) ., w;z;
subjectto z€(C, x>0

with w; = 1/(e + z;), to get next iterate

e repeat until convergence to get a local solution
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Sparse solution of linear inequalities

e minimize card(x) over polyhedron {z | Az < b}, A € R??"*®0

e /1 heuristic finds z € R*® with card(z) = 44

e iterated weighted /1 heuristic finds x with card(z) = 36
(global solution, via branch & bound, is card(z) = 32)

50

40t
/N
&  30r
N—"
o)
S
® 20+
(&)
10+
— iterated /4
44
0 Il Il Il T~
1 2 3 4 5 6

iteration

EE364b, Stanford University 11



Detecting changes in time series model

e AR(2) scalar time-series model

y(t +2) = a(t)y(t+ 1) +b(t)y(t) +v(t), ov(t) ID N(0,0.5%)

e assumption: a(t) and b(t) are piecewise constant, change infrequently
o given y(t), t =1,...,T, estimate a(t), b(t), t=1,...,T — 2

e heuristic: minimize over variables a(t), b(t), t=1,...,T — 1

L2yt +2) — a(®y(t + 1) = b(t)y(t))?
+y S (Jalt + 1) — a(t)] + bt + 1) — b(t)])

e vary v to trade off fit versus number of changes in a, b
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Time series and true coefficients
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left: TV with v = 10;
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right: iterated TV, 5 iterations, ¢ = 0.005
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Extension to matrices

e Rank is natural analog of card for matrices

e convex-rank problem: convex, except for Rank in objective or
constraints

e rank problem reduces to card problem when matrices are diagonal:
Rank(diag(x)) = card(x)

e analog of /; heuristic: use nuclear norm, || X||. =), 0:(X)
(sum of singular values; dual of spectral norm)

e for X = 0, reduces to Tr X (for z = 0, ||z||; reduces to 11z)
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Factor modeling

e given matrix ¥ € S”, find approximation of form > = FFT 4+ D, where
F € R"™", D is diagonal nonnegative

e gives underlying factor model (with r factors)

r=Fz+v, v~N(0,D), z~N(0,1I)

e model with fewest factors:

minimize Rank X
subject to X =0, D > 0 diagonal
X+DeC

with variables D, X € S™
C is convex set of acceptable approximations to X
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e c.g., via KL divergence

C={2] —logdet(X~Y22x"V3) L Tr("1282"Y2) —pn <€}

e trace heuristic:

minimize Tr X
subject to X =0, D > 0 diagonal
X+DecC

with variables d € R", X ¢ §"
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Example
e r=Fz+uv z~N(0,I), v~N(0,D), D diagonal; F € R*"*?
e Y is empirical covariance matrix from N = 3000 samples

e set of acceptable approximations

C={Z[z73E -2 2| <8}

e trace heuristic

minimize Tr X
subjectto X >0, d>=0
[X712(X 4 diag(d) — )22 < B
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Trace approximation results

Rank(X)
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e for B = 0.1357 (knee of the tradeoff curve) we find

— / (range(X), range(FFT)) = 6.8°
= ||[d - diag(D)||/|| diag(D)|| = 0.07

e i.e., we have recovered the factor model from the empirical covariance
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